Wednesday 21 September 2011

Firewall


firewall
There are several types of firewall techniques:
·  Packet filter: Looks at each packet entering or leaving the network and accepts or rejects it based on user-defined rules. Packet filtering is fairly effective and transparent to users, but it is difficult to configure. In addition, it is susceptible to IP spoofing.
·  Application gateway: Applies security mechanisms to specific applications, such as FTP and Telnet servers. This is very effective, but can impose a performance degradation.
·  Circuit-level gateway: Applies security mechanisms when a TCP or UDP connection is established. Once the connection has been made, packets can flow between the hosts without further checking.
·  Proxy server: Intercepts all messages entering and leaving the network. The proxy server effectively hides the true network addresses.

History

Firewall technology emerged in the late 1980s when the Internet was a fairly new technology in terms of its global use and connectivity. The original idea was formed in response to a number of major internet security breaches, which occurred in the late 1980s. In 1988 an employee at the NASA Ames Research Center in California sent a memo by email to his colleagues that read,
We are currently under attack from an Internet VIRUS! It has hit Berkeley, UC San Diego, Lawrence Livermore, Stanford, and NASA Ames.
This virus known as Morris Worm was carried by e-mail. The Morris Worm was the first large scale attack on Internet security; the online community was neither expecting an attack nor prepared to deal with one.


Background and Firewall Basics
Before being able to understand a complete discussion of firewalls, it's important to understand the basic principles that make firewalls work.

What is a network firewall?

A firewall is a system or group of systems that enforces an access control policy between two or more networks. The actual means by which this is accomplished varies widely, but in principle, the firewall can be thought of as a pair of mechanisms: one which exists to block traffic, and the other which exists to permit traffic. Some firewalls place a greater emphasis on blocking traffic, while others emphasize permitting traffic. Probably the most important thing to recognize about a firewall is that it implements an access control policy. If you don't have a good idea of what kind of access you want to allow or to deny, a firewall really won't help you. It's also important to recognize that the firewall's configuration, because it is a mechanism for enforcing policy, imposes its policy on everything behind it. Administrators for firewalls managing the connectivity for a large number of hosts therefore have a heavy responsibility.
Why would I want a firewall?
The Internet, like any other society, is plagued with the kind of jerks who enjoy the electronic equivalent of writing on other people's walls with spray-paint, tearing their mailboxes off, or just sitting in the street blowing their car horns. Some people try to get real work done over the Internet, and others have sensitive or proprietary data they must protect. Usually, a firewall's purpose is to keep the jerks out of your network while still letting you get your job done.
In a case where a company's policies dictate how data must be protected, a firewall is very important, since it is the embodiment of the corporate policy. Frequently, the hardest part of hooking to the Internet, if you're a large company, is not justifying the expense or effort, but convincing management that it's safe to do so. A firewall provides not only real security--it often plays an important role as a security blanket for management.


What can a firewall protect against?
Some firewalls permit only email traffic through them, thereby protecting the network against any attacks other than attacks against the email service. Other firewalls provide less strict protections, and block services that are known to be problems.
Generally, firewalls are configured to protect against unauthenticated interactive logins from the ``outside'' world. This, more than anything, helps prevent vandals from logging into machines on your network. More elaborate firewalls block traffic from the outside to the inside, but permit users on the inside to communicate freely with the outside. The firewall can protect you against any type of network-borne attack if you unplug it.
Design and Implementation Issues
What are some of the basic design decisions in a firewall?
There are a number of basic design issues that should be addressed by the lucky person who has been tasked with the responsibility of designing, specifying, and implementing or overseeing the installation of a firewall.
The first and most important decision reflects the policy of how your company or organization wants to operate the system: is the firewall in place explicitly to deny all services except those critical to the mission of connecting to the Net, or is the firewall in place to provide a metered and audited method of ``queuing'' access in a non-threatening manner? There are degrees of paranoia between these positions; the final stance of your firewall might be more the result of a political than an engineering decision.
The second is: what level of monitoring, redundancy, and control do you want? Having established the acceptable risk level (i.e., how paranoid you are) by resolving the first issue, you can form a checklist of what should be monitored, permitted, and denied. In other words, you start by figuring out your overall objectives, and then combine a needs analysis with a risk assessment, and sort the almost always conflicting requirements out into a laundry list that specifies what you plan to implement.
The third issue is financial. We can't address this one here in anything but vague terms, but it's important to try to quantify any proposed solutions in terms of how much it will cost either to buy or to implement. For example, a complete firewall product may cost between $100,000 at the high end, and free at the low end. The free option, of doing some fancy configuring on a Cisco or similar router will cost nothing but staff time and a few cups of coffee. Implementing a high end firewall from scratch might cost several man-months, which may equate to $30,000 worth of staff salary and benefits. The systems management overhead is also a consideration. Building a home-brew is fine, but it's important to build it so that it doesn't require constant (and expensive) attention. It's important, in other words, to evaluate firewalls not only in terms of what they cost now, but continuing costs such as support.
On the technical side, there are a couple of decisions to make, based on the fact that for all practical purposes what we are talking about is a static traffic routing service placed between the network service provider's router and your internal network. The traffic routing service may be implemented at an IP level via something like screening rules in a router, or at an application level via proxy gateways and services.
The decision to make is whether to place an exposed stripped-down machine on the outside network to run proxy services for telnet, FTP, news, etc., or whether to set up a screening router as a filter, permitting communication with one or more internal machines. There are benefits and drawbacks to both approaches, with the proxy machine providing a greater level of audit and, potentially, security in return for increased cost in configuration and a decrease in the level of service that may be provided (since a proxy needs to be developed for each desired service). The old trade-off between ease-of-use and security comes back to haunt us with a vengeance.
What are the basic types of firewalls?
Conceptually, there are three types of firewalls:
  1. Network layer
  2. Application layer
  3. Hybrids

Network layer firewalls

These generally make their decisions based on the source, destination addresses and ports (see Appendix 6 for a more detailed discussion of ports) in individual IP packets. A simple router is the ``traditional'' network layer firewall, since it is not able to make particularly sophisticated decisions about what a packet is actually talking to or where it actually came from. Modern network layer firewalls have become increasingly sophisticated, and now maintain internal information about the state of connections passing through them, the contents of some of the data streams, and so on. One thing that's an important distinction about many network layer firewalls is that they route traffic directly though them, so to use one you either need to have a validly assigned IP address block or to use a ``private internet'' address block [5]. Network layer firewalls tend to be very fast and tend to be very transparent to users.
Image firewalls-faq1.jpg
Figure 1: Screened Host Firewall
In Figure 1, a network layer firewall called a ``screened host firewall'' is represented. In a screened host firewall, access to and from a single host is controlled by means of a router operating at a network layer. The single host is a bastion host; a highly-defended and secured strong-point that (hopefully) can resist attack.
Image firewalls-faq2.jpg
Figure 2: Screened Subnet Firewall
Example Network layer firewall: In Figure 2, a network layer firewall called a ``screened subnet firewall'' is represented. In a screened subnet firewall, access to and from a whole network is controlled by means of a router operating at a network layer. It is similar to a screened host, except that it is, effectively, a network of screened hosts.
Application layer firewalls
These generally are hosts running proxy servers, which permit no traffic directly between networks, and which perform elaborate logging and auditing of traffic passing through them. Since the proxy applications are software components running on the firewall, it is a good place to do lots of logging and access control. Application layer firewalls can be used as network address translators, since traffic goes in one ``side'' and out the other, after having passed through an application that effectively masks the origin of the initiating connection. Having an application in the way in some cases may impact performance and may make the firewall less transparent. Early application layer firewalls such as those built using the TIS firewall toolkit, are not particularly transparent to end users and may require some training. Modern application layer firewalls are often fully transparent. Application layer firewalls tend to provide more detailed audit reports and tend to enforce more conservative security models than network layer firewalls.
Image firewalls-faq3.jpg
Figure 3: Dual Homed Gateway
Example Application layer firewall: In Figure 3, an application layer firewall called a ``dual homed gateway'' is represented. A dual homed gateway is a highly secured host that runs proxy software. It has two network interfaces, one on each network, and blocks all traffic passing through it.
Most firewalls now lie someplace between network layer firewalls and application layer firewalls. As expected, network layer firewalls have become increasingly ``aware'' of the information going through them, and application layer firewalls have become increasingly ``low level'' and transparent. The end result is that now there are fast packet-screening systems that log and audit data as they pass through the system. Increasingly, firewalls (network and application layer) incorporate encryption so that they may protect traffic passing between them over the Internet. Firewalls with end-to-end encryption can be used by organizations with multiple points of Internet connectivity to use the Internet as a ``private backbone'' without worrying about their data or passwords being sniffed.
What are proxy servers and how do they work?
A proxy server (sometimes referred to as an application gateway or forwarder) is an application that mediates traffic between a protected network and the Internet. Proxies are often used instead of router-based traffic controls, to prevent traffic from passing directly between networks. Many proxies contain extra logging or support for user authentication. Since proxies must ``understand'' the application protocol being used, they can also implement protocol specific security (e.g., an FTP proxy might be configurable to permit incoming FTP and block outgoing FTP).
Proxy servers are application specific. In order to support a new protocol via a proxy, a proxy must be developed for it. One popular set of proxy servers is the TIS Internet Firewall Toolkit (``FWTK'') which includes proxies for Telnet, rlogin, FTP, the X Window System, HTTP/Web, and NNTP/Usenet news. SOCKS is a generic proxy system that can be compiled into a client-side application to make it work through a firewall. Its advantage is that it's easy to use, but it doesn't support the addition of authentication hooks or protocol specific logging.
What are some reasonable filtering rules for a Cisco?
The example in Figure 4 shows one possible configuration for using the Cisco as filtering router. It is a sample that shows the implementation of as specific policy. Your policy will undoubtedly vary.
Image firewalls-faq4.jpg
Figure 4: Packet Filtering Router
In this example, a company has Class C network address 195.55.55.0. Company network is connected to Internet via IP Service Provider. Company policy is to allow everybody access to Internet services, so all outgoing connections are accepted. All incoming connections go through ``mail host''. Mail and DNS are only incoming services.

No comments:

Pages - Menu